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336. The Adsorption Isotherm of Langmuir and of Brunauer, 
Emmett, and Teller for Multihyers where n = 3. 

By D. C. JONES. 

An analysis of the adsorption isotherm of Langmuir and of Brunauer, 
Emmett, and Teller for multilayers, where the number of such layers is limited 
to 3, is made. The isotherms are shown to change from Typk I through IV 
and V and then to VA as the values of G change from just greater than 2.16 
to ca. 0.25. Three is thus the smallest value of n where all the known isotherm 
types for a limited number of multilayers can be encountered as c varies. A t  
high values of c (c > 1000) the change of adsorption type from I to IV again 
occurs in this case. The x / (  V/V,) against x curves are analysed, especially 
in relation to approximations which hold at low values of x. 

IT has been shown recently (Jones and Birks, J . ,  1951, 1127) that an analysis of the case when 
n = 2 in the Langmuir-Brunauer, Emmett, and Teller (B.E.T.) theories for multilayer 
adsorption leads to realisable isotherms which change from Type I to Type V as the value of G 
changes from c > 2 to 2 > c > ca. 0-2, and then to a type that may be called VA if 
ca. 0.2 > c > 0. The case when n = 3 is analysed in this paper. 

When n = 3 the Langmuir equation becomes 

and the Brunauer equation 

v CX(1 + 2x + 3x2) 
(2) - 

I / ' , - i q - F ( l + x + x 2 )  * * * * * * ' 

These equations are identical if o1p = cx and 02p = x ;  c then = ol/02 ; o3 is considered equa 1 
to oz. It is not necessary to assume for the purpose of this analysis that o2 = oL as in the 
further B.E.T. treatment. 

From equation (2), V / V ,  = 0 only when x = 0, the factor in parentheses in the numerator 
having no real roots. 

V/V, = 00 if 1 + cx + cx2 + cx3 = 0 ; this equation has no real positive roots (G > 0) ; 
if x is negative it can be shown that there is one real root ; Le., V / V ,  passes to infinity at  one 
negative value of x only. This is typical of all cases in this model where n is an odd number, 
and may be contrasted with the cases where n is even, e.g. ,  n = 2 (Jones and Birks, Zoc. cit.). 

V / V ,  approaches 3 as x approaches 00 (see Jones, J. ,  1951, 126). 

Differentiating equation (2), we obtain 

1 d V 1 + 4x + (c + 9)x2 + 4cx3 + cx4 . . . .  - - --- 
c * dx V ,  r1 + CX(1 + x + 

The numerator here, if equated to zero, has no real positive root (c > 0) and therefore for values 
of x > 0 no maximum or minimum occurs on the isotherm; such values do occur for values of 
x < 0. The gradient a t  the origin = c. 

Differentiating again, we obtain 

1 d2 ?' (C - 2) + 3(c  - 3 ) ~  + ~ C X '  - C(C - 1 7 ) ~ ~  + ~ C ( C  + 6)x4 + 6~2x5 + ~ 2 x 6  
* (4) - - --- 

c ' dxa V ,  [1 + c w  + x + ~ 2 ) ) 3 3  

The investigation of this equation for the occurrence of points of inflection on the isotherm can 
proceed best as follows : the sign changes of the coefficients of x (x > 0) as c varies can be 
considered from the point of view of Descartes's rule of signs (see, e g . ,  " The Theory of 
Equations," J. V. Uspensky, McGraw-Hill, 1948, p. 121) which can give preliminary 
information as to the general location of the roots. If 0 < c < 2 there is one sign change and 
therefore there is one real positive root only ; if G = 2 the absolute term is zero, giving a root a t  
the origin and, excluding zero, there is now one sign change, again giving one real positive root 
only; if 3 =. c > 2 there are two sign changes and therefore either two real positive roots or 
none; if 3 < c < 17 there are no sign changes and therefore no positive roots, i . e . ,  between 
c = 3 and c = 17 there can be no points of inflection on the isotherm. But if G is greater than 
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17 the term in x3 is negative and again there are two sign changes and therefore either two real 
positive roots or none. Descartes’s rule of signs is of particular value in this case because of the 
small number of sign changes involved and by its aid alone the occurrences of points of 
inflection, and so of isotherm types, can be mapped out. 

The actual positions of the points of inflection can then be located by a combination of the 
methods of solving the polynomial in x graphically, which will give values of x corresponding to 
chosen values of c, and of treating the equation as a quadratic in c, which will give values of c 
corresponding to chosen values of x .  In this way the following results have been obtained 
(illustrated in Fig. 1 ~ ) .  If c > ca. 2.16 there are no real positive roots (it will be shown later 
that this does not apply when c > ca. 1000) ; if c = ca. 2.16 there are two equal positive roots 
when x has the value ca. 0.1 ; if 2.16 > c > 2 the two roots separate, until when c = 2 one root 
is a t  the origin and the other a t  x = ca. 0.21 ; if 2 > c > 0-2 one point of inflection is now at  
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negative values of x and the other a t  higher positive values of x ;  if c = ca. 0-25, x = 1, and if 
ca. 0.25 > c > 0 one point of inflection is negative and the other is a t  an x value greater than 
the saturation value (if x = p / p , ) .  For this case then there is the appearance on some of the 
realisable isotherms of two points of inflection, giving the type of curve that has been labelled 
by Brunauer Type IV, these two points having their genesis at  c = ca. 2.16 and then rapidly 
diverging as c gets smaller; the type changes involved are shown in Fig. 1 ~ .  This case does 
not occur when n = 1 (Type I only) or with n = 2 (see above). When n = 3 it occurs only 
within the narrow range of c values as described here ; when n > 3 this range is widened. 

If x > ca. 0.226, there are two real roots of c, one positive and one negative; if 
ca. 0.226 > x > 0 there are two real positive roots of c, one of which (near c = 2) has already 
been discussed in this paper, and the other occurs when c > 1100. It has been found that the 
two positive roots have their genesis a t  a value of c = ca. 1100 corresponding to a value of 
x = ca. 0.16; as c increases again these values diverge (apparently approaching the values of 
x = 0 and x = 0.226). Thus at  high c values a change of isotherm from Type I to Type I V  
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again occurs between certain x values, which however may be difficult to observe experimentally. 
In Fig. 1~ the curves show the changes in the location of the points of inflection with changes 
in the value of c for this case. Attention should be drawn here to the fact that, as pointed out 
before (Jones, Zoc. cit.), this analysis would apply also to a monolayer (Langmuir’s Case IV) 
where there are three molecules accommodated per elementary space and when Q~ # o2 but 

In Fig. 2 are illustrated theoretical isotherms for typical values of c ;  and in view of the 
considerable use made by experimenters of the plots x / ( V / V , )  against x ,  which are of course 
tests of the agreement of the isotherm with a rectangular hyperbola whose asymptotes are parallel 
to the axes and which passes through the origin (compare Langmuir’s Case I) , these corresponding 
graphs are given in Fig. 3. For n = 3, as contrasted with n = 2, the isotherm is never a 
rectangular hyperbola, although in certain concentration ranges, as seen in Fig. 3, a straight 
line could be drawn passing fairly well through the points. 

It can be deduced from simple calculus that the gradient of the x / (  V/V,) against x curve at  
x = 0 is (c - 2)/c, and that this applies to all values of n > 1. Therefore when c = 2 the 
gradient a t  x = 0 is 0 ; i t  is positive if c > 2 and negative if c < 2 (see Fig. 3 for illustrations of 
these points when n = 3). Further, in view of the importance of results determined at  low 

0 2  == Q3. 

FIG. 3. 

pressures (e.g., Foster, J., 1945, 773), suitable approximations to the isotherms at  low values 
of x are here investigated. From the equation 

x 1 + CX + cx2 + cx= -- - 
V / V ,  c(1  + 2% + 3xy-  

i t  is seen that when x = 0, x / (  V/V,) = l / c ;  dividing the bracketed factor in the denominator 
into the numerator, we obtain 

c (5 )  
x 1 + x(c - 2) + xy1  - c) + . . . . . . . . . . . .  -- - 

V! VTn 
where there are further terms in the numerator involving higher powers of x .  The same 
expression is obtained for all values of n > 2, for the terms involving x and x2. [For n = 2 
all the coefficients of x2 and higher powers of x include the factor (4 - c).] This means that for 
small values of x ,  where cx2 can be neglected in comparison with cx, there is a linear relation 
whose gradient is (c - 2) /c (the gradient a t  x = 0), and this applies to all values of n > 1. 
If n = 00 the further terms in the numerator of equation (5 ) ,  involving higher powers of x 
than xa, are absent. Therefore the plot of x / (  V/V,) against x for certain values of c, starting 
from x / (  V/V,) = l / c  when x = 0, has then the same gradient for small x values, whatever the n 
values (n > 1). 
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Returning now to the isotherm, it can be seen that it follows that at these small values of x 
the curves are hyperbok of the same type as before; in fact the isotherm can be written in 
these regions for all values of n > 1, V / V ,  = [cx/(l + x(c  - 2)], the asymptote equations 
being V / V ,  = c/(c - 2) and x = - L/(c - 2). If c > 2 there is in this region of x values a 
Type I isotherm (in the sense that it is concave to the x axis) ; if G < 2 there is a Type I11 curve 
in this region (convex to the x axis). If c = 2 the term in x in the denominator is zero and 
V / V ,  = 2x (z.e., a straight line of gradient 2). It is thus clear why the approximately linear 
portion of the isotherm for c = 2 extends for some distance from the origin (see Fig. 2) ; this 
linear portion is further extended because of the incidence of the second point of inflection at  
x = ca. 0-21 for n = 3. For c = 1 the curve is convex to the x axis a t  first, but later has an 
approximately linear region located round the point of inflection at  x = ca. 0.6. If c is large 
the approximation V / V ,  = cx/(l + ex)  will be satisfactory at  these sufficiently low values of x ,  
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